Fungus hunting in Otago

Flat hunting in Otago

My son is moving down to Dunedin to start his PhD. So he and I went down last weekend to find a flat. We found one just above the town belt and a 16 minute walk from the University of Otago central library.

It was also a chance to walk along Queens Drive which meanders through the town belt that separates the city on the flat from the hill suburbs above. I first walked this way when I had just finished my PhD and had my first job lecturing in the Botany Department here.

Dunedin Town Belt, Newington Ave [photo Geoff Ridley]

Dunedin Town Belt, Newington Ave [photo Geoff Ridley]

The enjoyment of walks and rambles …

The reason for walking the town belt this time was to get some photos for a blog about Helen Kirkland Dalrymple. My first encounter with her writing was reading Fungus Hunting in Otago, New Zealand during my PhD. It’s a slim book of 30 pages published in Dunedin in 1940. And, ignoring scientific publications, is the first popular book of fungi to be published in New Zealand. In fact, there would not be another until 1970 when Marie Taylor’s Mushrooms and Toadstools in New Zealand was published.

Fungus Hunting in Otago, New Zealand.

Fungus Hunting in Otago, New Zealand with Leratiomyces erythrocephalus on the cover.

 

All I know about Helen Dalrymple came from a ‘gallery of naturalists’ that Otago Museum has on its top floor in the old wing. If anyone has a photo of her I would love to see it [see PS below]. The museum exhibit had this to say:

Helen Kirkland Dalrymple (c. 1883-1943)

Was an enthusiastic botanist. She was born in Birmingham but spent her early years at Puerua, near Balclutha, where her father was Presbyterian minister. In 1898 she began attending Otago Girls High School, and in 1902 was awarded the Women’s Scholarship at Otago University. She graduated BA in 1906 and taught at Winton and Napier.

In 1913 she joined the staff of Otago Girls High School and taught English, Latin and Botany for 25 years. It is mainly as a botanist that she is remembered, particularly for her field trips, expeditiously arranging forays into the Town Belt to fit into an hour long lesson or longer excursions to Signal Hill in search of ground orchids.

Helen Dalrymple spent many hours on her delicate water colours, mainly of native plants, which she later used to illustrate her books, Orchid Hunting in Otago (1937) and Fungus Hunting in Otago (1940).

A keen member of the Naturalist Field Club she was regarded as a local authority on orchids and mycology. Gentle in speech and manner, she nevertheless had great determination and strength of character and when in 1915, and later in 1941, it was suggested that the club go into recess it was largely owing to her efforts that it kept going.

Display at Otago Museum [photo Geoff Ridley]

Display at Otago Museum [photo Geoff Ridley]

Miss Finlayson was afraid to open the box

I love Helen’s writing style and casualness and think if she was alive today she would be a blogger:

Earth stars are delightful objects. The first one I ever saw was picked up by an enthusiastic Field Clubber many years ago on his Sunday afternoon walk round the Town Belt. He put it carefully in a matchbox, took it to church that evening, and passed the box on to Miss Finlayson who happened to be sitting in the same seat. At first Miss Finlayson was afraid to open the box, thinking some strange insect might jump out; but finally she did and later handed the specimen over to me for recording.

On the Town Belt, Dunedin [by H.K. Dalrymple]

On the Town Belt, Dunedin [by H.K. Dalrymple]

Helen included a number of line drawings in her book the last was this view towards Otago Boys High with the tower visible above the bush. We went seeking this view but I think that Moana Pool has been built across it and this was the best I could do.

On the Town Belt, Dunedin [photo Geoff Ridley]

On the Town Belt, Dunedin [photo Geoff Ridley]

Reference

Dalrymple, HK, 1940. Fungus Hunting in Otago, New Zealand. Coulls Somerville Wilkie Limited, Dunedin

PS 18 September 2016

Conor sent a link to this picture of Helen Kirkland Dalrymple

Helen Kirkland Dalrymple [photo University of Otago]

Helen Kirkland Dalrymple [photo University of Otago]

The photo and the comment about her school field trips to the town belt remind me of Ronald Searle’s Belles of St Trinian’s cartoons.

[Ronald Searle , 1951]

[Ronald Searle , 1951]


Sheep milk and boletes

From the Gisborne Herald 20 August 2016:

A slow but certain interest in dairy sheep has started to build throughout New Zealand as some cornerstone corporate farmers cement the industry’s footing as a viable pastoral alternative to traditional land uses. … Globally the dairy sheep market is estimated to be worth US$8 billion at the farm gate …….

The Flock House homstead [photo baileys.co.nz]

The Flock House homstead [photo baileys.co.nz]

The summer of ’92

In the summer of 1992-1993 I was living and working at an AgResearch research farm, Flock House, in the Rangitikei. This was a period of massive restructuring in government science organisations and funding. It was the beginning of the modern period where incremental science became a dirty word and it was all about innovation and what would become ‘disruptive’ science.

Lambs on a modern litter system on a Landcorp farm near Taupo [photo Gerard Hutching]

Lambs on a modern litter system on a Landcorp farm near Taupo [photo Gerard Hutching]

One project the organisation was working on was the development of a flock of ewes for milking. To maintain lactation the lambs were removed from the ewes soon after birth. The lambs were kept in a big, covered, concrete floored yards to which my lab was attached. The floor of the yards had been boxed with slabs of untreated, rough cut Pinus radiata to create a bed that was about 20 cm deep. These beds were then filled with pine wood chips which formed a deep litter system to raise the lambs on. The wood chips absorbed the urine from the lambs.

A flash of yellow

After a few weeks of the lambs being penned on the litter I saw a bright yellow boletes growing on the wood chips. It completely confused me as at that time I only knew boletes to be mycorrhizal and not saprobic on wood. I could not identify it so filed it away.

Buchwaldoboletus sphaerocephalus from Flock House [picture Geoff Ridley]

Buchwaldoboletus sphaerocephalus from Flock House [picture Geoff Ridley]

I’ve seen you before!

That is until 2009 when I saw a picture of Buchwaldoboletus sphaerocephalus in the Field Mycologist (Weightman, 2009). Here was a picture of a bright yellow bolete with the caption: “This painting of Buchwaldoboletus sphaerocephalus is one of the earliest known of this rare species which grows on heaps of old sawdust“. And the text said of it:

Buchwaldoboletus sphaerocephalus (as Boletus sulfureus). An important early illustration of this rarity. It was sent from Brandon, Norfolk, Nov 3, 1876 by Plowright who probably also supplied the comment “from sawdust heaps only seen by Fries himself once”.

Buchwaldoboletus sphaerocephalus by Dr Henry Graves Bull, 1818-1885 [photo Royal Botanic Gardens, Kew]

Searching back through the literature I had to hand I found the comment: “Buchwaldoboletus (Boletaceae). This genus is world-wide although there are only a few constituent members; all grow generally on gymnospermic woods“. (Watling, 2002)

I have no doubt that I found my fungus. Given the bright yellow fruitbody it is surprising that we don’t see a lot more of this species in New Zealand. Particularly with the use of pine wood chip as garden much. A possibility is that it was the high nitrogen content in the litter from the lambs’ urine that triggered the fungus to fruit.

I also isolated managed to isolate it into culture and it has survived. It is slow growing and only forms a small mycelium and stains the media dark brown.

Buchwaldoboletus sphaerocephalus culture [photo Geoff Ridley]

Buchwaldoboletus sphaerocephalus culture [photo Geoff Ridley]

Further reading

Hutching G, 1996. New Zealand sheep milk gelato makes it to finals of global dairy awards. www.stuff.co.nz

Watling R, 2002. One bolete genus or …? Field Mycology 3: 84-88

Weightman J, 2009. Dr Bull’s paintings of fungi. Field Mycology 10: 113-121. [particularly p. 11]


Did the spoon turn black?

Looking around the internet I came across someone looking for information on whether or not the mushrooms he and his wife had collected were edible. One piece of advice he got was “my understanding is as long as they are brown on the underside they are sweet”. Combined with other observations this is a useful characteristic. On its own it could be deadly.

Agaricus field mushrooms [photo RimfireNZ]

Agaricus field mushrooms [photo RimfireNZ]

Wisest precautions

It reminded me of the advice that Henry Connor gave in The Poisonous Plants of New Zealand:

The possibility that a fungus may be toxic to man is ever present. Specific warnings are difficult to give and the wisest precautions are to exercise the greatest care and to establish the known record of any fungus before eating it.

Henry Connor [photo from The Poisonous Plants of New Zealand 1977]

Henry Connor [photo from The Poisonous Plants of New Zealand 1977]

Hoary old chestnuts

Henry then lists all of the hoary old chestnuts that people believed were used to test for edibility:

  • Appearance is no guide to edibility.
  • Odour is no guide to edibility.
  • Peeling of the cap does not mean edibility.
  • A sharp bitter taste is not characteristic of poisonous fungi.
  • Both poisonous and edible fungi may be viscid [means sticky or slimy].
  • Rapid change in colour when cut or broken is not a guide to edibility.
  • Green, red and white fungi are found among both poisonous and edible species.
  • Exudation of a milky fluid when broken is not characteristic of edible fungi only.
  • Fungi nibbled by rabbits and other animals are not necessarily safe for human consumption.
  • Fungi which are slug-eaten are not necessarily edible. Slugs thrive on Amanita phalloides [the death cap], the most poisonous fungi known.
  • Site of growth is no indication of edibility: for example mushrooms growing on highly manured places are not necessarily poisonous nor are those growing near rusty nails.
  • Fungi growing near serpents are not necessarily poisonous.
  • Blackening of a spoon, blackening of a silver coin, coagulation of milk, turning an onion bluish, turning an onion brown, and turning of parsley yellow are not safe indications of the presence of poisonous fungi. Fungi which do not act in any of these ways are not necessarily edible.”
Variation in colour within a single species [photo RimfireNZ]

Variation in colour within a single species [photo RimfireNZ]

Variation in form within a single species [photo RimfireNZ]

Variation in form within a single species [photo RimfireNZ]

This is the one that killed me

At the end of the day the best advice is

  1. Get a few good guide books that give good descriptions of the mushroom and the places it grows.
  2. Study the books and make sure you understand the terms that are being used.
  3. If possible seek advice from some one that has experience (in person or on-line).
  4. If in doubt then throw it out.

And if you are still unsure and go ahead and eat then leave some in the fridge labelled “this is the one that killed me”. That way we can all learn from your experience.

Further reading

Connor HE, 1977. The Poisonous Plants of New Zealand. New Zealand Department of Scientific and Industrial Research. Bulletin 99.

Wikipedia, 2016. Henry Connor (botanist)

 


Dust to dust …

I was walking my usual beat out in the bush collecting mushrooms and I stopped to look at a dead possum at the base of a beech tree. I had noticed it the last time I was out two weeks ago. Since then its body had collapsed and fur was beginning to come loose. It was just the normal decay process happening as it does – dust to dust.

A dead possum in the beech forest [photo from emmarichardson2014.wordpress.com]

A dead possum in the beech forest [photo from emmarichardson2014.wordpress.com]

Death in the forest

Possums, along with rats and stoats, had caused the bird population to crash so it was very quiet. It was likely the possum had been poisoned as part of a control programme for these introduced pests. Standing their looking at its remains I heard a rustling. Looking around I saw nothing. I stood and listened. It was a continuous rustling sound. Looking down I saw movement in the dry leaf litter. Looking harder I saw a line, more of an arc, of maggots moving away from the possum. I assumed that they had eaten all there was to eat and they were seeking a place to pupate. I never did find out whether or not this was normal behaviour for fly maggots.

Possum skulls in the forest [photo from www.tourism.net.nz]

Possum skulls in the forest [photo from http://www.tourism.net.nz]

Them bones …

This was in the late autumn (late April and early May). I kept an eye on the possum remains as it was quickly reduced to bones and a little fur. Then at the beginning of October I saw a group of mushrooms, Laccaria, growing amongst the bones. Two weeks later there were even more.

This was way back in 1986 during the first collecting season of my PhD. The place was Paua Ridge in the Orongorongo Valley to the east of Wellington. At the time I didn’t think much about but later I learnt of the work of Naohiko Sagara, from Japan, on ammonia fungi.

Sargara had studied fungi that were associated either decomposing bodies, or animal latrines where large amounts of ammonia or nitrogen compounds accumulated. In what I was seeing in the Orongorongo was a fungus, Laccaria, in a mycorrhizal association with a tree, Nothofagus truncata, mopping up the nitrogenous waste products from the decomposition of the possum and transferring that nitrogen back to the tree. Neat huh! Natural selection never ceases to astound me.

Laccaria masoniae fruiting around a sheep skull, central North Island [photo Clive Shirley, at NatureWatchNZ]

Laccaria masoniae fruiting around a sheep skull, central North Island [photo Clive Shirley, at NatureWatchNZ]

Two genera, Hebeloma and Laccaria, seem to have become the main ammonia fungi. But not all species in the genera are ammonia fungi. In Australia it is Hebeloma aminophilum is the one and is known as the ‘ghoul fungus’. Here in New Zealand it seems to be Laccaria masoniae as it is frequently found growing around bones. However, it has not been proven by any rigorous study.

Further reading

Clive Shirley. Laccaria masoniae. www.hiddenforest.co.nz

Chris Drudge, 2016. Some fungi are into dead bodies and waste piles. Rosin Cerate: quirky quality science.

New Zealand Tourism Guide, 2016. Goodnature self resetting traps. www.tourism.net.nz

Sagara, N. 1995. Association of ectomycorrhizal fungi with decomposed animal wastes in forest habitats: a cleaning symbiosis? Canadian Journal of Botany 73 (supplement 1): s1423-s1433.

 

 


Mushroom lights

Mushroom lights [from DIY Perks, YouTube]

Mushroom lights [from DIY Perks, YouTube]

 From the files – Jan ‘96

Twenty years ago when I was working for the Forest Health group at the New Zealand Forest Research Institute in Rotorua I received a letter from Frank Blom who lived in Awanui, Northland. Frank said:

In Nov, ’95 I noticed some 50 to 60 ‘glow worms’ on the bark of living Golden Willows in my place on the alluvial flats along the Awanui River.

They were clearly visible 2 to 3m away, but the source of the light could not be found by torchlight. A magnifying-glass however showed tiny mushrooms. By 25th Dec. there were only a few left and I brought one inside by breaking off a piece of bark.

Frank Blom's notes

Frank Blom’s notes

 

Mushroom lights

I wrote back that it was probably an undescribed species of Mycena and that I was not aware that any of the described New Zealand species were bioluminescent. The closest species, geographically, to New Zealand at that time was Mycena chlorophanus from Queensland.

Mycena chlorophanus [photo http://steveaxford.smugmug.com ]

Mycena chlorophanus [photo http://steveaxford.smugmug.com ]

More recently I came across a blog by Anna Chinn who blogged about a night-time excursion to Matawai, near Gisborne in search of glowing tree ferns. In fact the glow came from a Mycena rotting the  dead fronds skirting the trunk of Cyathea smithii. Not only does the mushroom glow but so too does the fungal hyphae growing through the dead frond.

Cyathea smithii [photo Leon Perrie, Museum of New Zealand Te Papa Tongarewa]

Cyathea smithii [photo Leon Perrie, Museum of New Zealand Te Papa Tongarewa]

The Mycena in question goes by the working name of Mycena ‘Crystal Falls’ which is the location (Waipori/Crystal Falls, Otago) that it was collected from and first suspected to be a new species. It has been collected from the deep south to the far north. It has been found growing on the ferns Cyathea medullaris, Cyathea smithii, Blechnum sp., on the natives Ripogonum scandens and Metrosideros excelsa, and the exotic Salix fragilis.

Mycena ‘Crystal Falls’ [photo Jerry Cooper]

Mycena ‘Crystal Falls’ [photo Jerry Cooper]

Fungi at War

In general bioluminescent fungi are not obvious in New Zealand. Ian Hood (1992) wrote:

Fresh Armillaria-decayed wood is bioluminescent and can be seen glowing eerily along bush-tracks on dark nights.

While Peter Buchanan (2006) said of Armillaria decay:

Decayed wood when fresh emits a weak light (bioluminescence), the glow visible in forests on dark nights.

John Ramsbottom in 1923 in A Handbook of the Larger British Fungi wrote about luminosity of decaying wood. He said that it had been known from classical times and referred by Aristotle. He gave many examples of its use through time but only one really comes close to home when he talks about World War I:

In many places on the Western front during the war our troops found luminous wood useful for putting in the straps of their steel helmets and on the fore-sights of their rifles.

New Zealand soldiers in a front-line trench on the Somme, La Signy Farm, France, 6 April 1918. Sergeant Ormond Burton (Auckland Regiment's official historian who became a prominent Second World War conscientious objector) stands on a firing step in the trench wall [photo Henry Armytage Sanders, Alexander Turnbull Library, ref no: 1/2-013092-G]

New Zealand soldiers in a front-line trench on the Somme, La Signy Farm, France, 6 April 1918. Sergeant Ormond Burton (Auckland Regiment’s official historian who became a prominent Second World War conscientious objector) stands on a firing step in the trench wall [photo Henry Armytage Sanders, Alexander Turnbull Library, ref no: 1/2-013092-G]

In the New Zealand context Steven Brightwell (1993) wrote:

World War One soldiers nailed bits of fungus-infested wood to their helmets and bayonets. The phosphorescent fungi, glowing faintly in the dark, provided enough light to enable the soldiers to avoid collisions in the trenches, but not enough to make them targets for the enemy.

I haven’t been able to find any direct reference to this practice by New Zealand troops – if you have let me know where.

A good account of bioluminescence in fungi is given by Brian Perry at MykoWeb.

References

Brightwell, S 1993. Feasting on fungi. New Zealand Geographic 18 (June): 34-58

Buchanan, P 2006. Fungal Biodiversity. In Parsons, S., Blanchon, D., Buchanan, P., Clout, M., Galbraith, M., Weihong, J., Macdonald, J., Walker, M, Wass, R, 2006. Biology Aotearoa. Pearson Education New Zealand. ISBN 1 877268 00 3. Pp  72-83

Hood, I 1993. An illustrated guide to fungi on wood in New Zealand. Auckland University Press.

PS 14/08/2016

Here is Taylor Lockwood’s photo of Mycena ‘Crystal Falls’ that Jerry Cooper mentions in his comment below.

Mycena 'Crystal Falls' [photo Taylor Lockwood]

Mycena ‘Crystal Falls’ [photo Taylor Lockwood]


A mycology of New Zealand in 10 fungi

I posed the question to myself – if I had to pick 10 fungi to epitomise mycology in New Zealand what would they be and why would I choose them? In some cases I have blogged about them before and some I will do so in the future. So here is my choice.

1. Amanita muscaria is number one as this exotic fungus would be one of the most obvious and abundant mushrooms in our autumn landscape. It is beneficial in that it is an ectomycorrhizal fungus and is important in enhancing the growth of our pine and Douglas-fir plantations.

[photo Geoff Ridley]

Amanita muscaria [photo Geoff Ridley]

2. Armillaria novae-zelandiae and Armillaria limonea are two native species that have wreaked havoc in our tree plantations and kiwifruit orchards. They actively attack the roots and root collar of wood plants and are capable of killing them.

Armillaria novae-zelandiae [photo Geoff Ridley]

Armillaria novae-zelandiae [photo Geoff Ridley]

3. Entoloma hochstteri – this beautiful blue native mushroom is every ones holy grail to find. It is also the only mushroom to appear on currency, NZ$50, anywhere in the world. See Hochstetter’s blue pinkgill.

The new $50 note

Entoloma hochstteri on the $50 note

 

4. Pithomyces chartarum is an exotic microfungus that you will never see that decomposes dead grass. However, it can produce spores in great numbers at times, such as this year, and causes the disease known as facial eczema in sheep and cattle. The spores contain a toxin which can severely damage the liver of the affected animal and can lead to death. See Brown Grenades.

Pithomyces chartarum [photo ??]

Pithomyces chartarum [photo ??]

5. Gloeophyllum sepiarium, Gloeophyllum trabeum, Oligoporus placenta and Antrodia sinuosa – I am treating this functional group of four native wood decay fungi as one. They cause cubical brown rot and are the most prevalent species causing damage in leaky house syndrome in New Zealand. They rose to prominence in the 1990s after changes in building regulations saw the use of unsuitable material and building styles resulting in buildings not being weather proof. See Fungi in leaky homes.

Heavily degraded framing caused by brown rot fungus within the wall cavity [photo Dirk Stahlhut]

Rotting framing timber caused by brown rot fungus [photo Dirk Stahlhut]

6. Ileodictyon cibarium is our most common native stinkhorn and once seen never forgotten. I included this one as it one of the few species that has some Maori lore associated with it so bridges the gap between traditional knowledge and western science.

The common-basket stinckhorn: Ileodictyon cibarium [photo Geoff Ridley]

Ileodictyon cibarium [photo Geoff Ridley]

7. Neotyphodium lolii is another exotic microfungus that you will never see but which has had a significant effect in New Zealand pastoral farming. The fungus is an endophyte growing between the cells in a ryegrass plant. It produces a toxin that affects the nervous system of grazing animals. Modern ryegrass cultivars have been bred and inoculated with non-toxic strains of Neotyphodium lolii to overcome this significant disease.

2016.08.07 endophyte

Neotyphodium growing between the cells in ryegrass [photo Grasslanz]

8. Cyttaria gunnii is a distinctive Gondwanan element of our fungal flora. It is a parasite on southern beech [Nothofagus]. Cyttaria species occur in New Zealand, Tasmania, SE Australia, and southern Chile and Argentina. See Cyttaria galls on silver beech.

Cyttaria gunnii [photo Forest Research]

Cyttaria gunnii [photo Forest Research]

9. Auricularia cornea is a very common native wood decay fungus and was the basis of the first fungal export industry in New Zealand. See Taranaki wool.

Auricularia cornea [photo Geoff Ridley]

Auricularia cornea [photo Geoff Ridley]

10. Melampsora larici-populina is an exotic fungus causing rust on poplars. It arrived in the mid 1970s defoliating poplars across the country. It was the first well documented case of a fungal disease blowing in from Australia in a process that was to become known as trans-Tasman transport. See Melampsora leaf rusts in New Zealand.

Melampsora larici-populina infected poplars [photo Landcare Research]

Melampsora larici-populina infected poplars [photo Landcare Research]


“Great Britain needs ergot from New Zealand”

Ergot (Claviceps purpurea) on Timothy grass [photo Charlotte Westwood]

Ergot (Claviceps purpurea) on Timothy grass [photo Charlotte Westwood]

Charlotte Westwood tweeted about ergot on Timothy grass and with pictures of the seed being processed and cleaned. Ergot forms when a fungus, Claviceps purpurea, which lives inside the plant and between its cells (it’s then called an endophyte) hijacks the grass flower and converts it to a black stromata or overwintering stage. The stromata drop to the ground and develop into fruiting bodies in the spring releasing spores that colonise newly sprouting grass plant.

Harvested Timothy grass seed with ergots [photo Charlotte Westwood]

Harvested Timothy grass seed with ergots [photo Charlotte Westwood]

Cleaned Timothy grass seed [photo Charlotte Westwood]

Cleaned Timothy grass seed [photo Charlotte Westwood]

Collection of ergot. Intensive drive. Need for war purposes.

Ergot was important because it was a source of drugs that were used to stop bleeding during child birth and surgery. For Britain the need for such drugs would be critical for the treatment of wounded soldiers and civilian during World War II. However the major source ergot was Europe [… from Central Europe, Hungary, Rumania, Spain and Russia, where they were collected, mostly by children, from crops of ryecorn …] which was no longer available. Step up mark the far flung Dominions of the Empire.

The Imperial Government has asked New Zealand to send all possible supplies

The collection of ergot in the Dominion is being sponsored by the Department of Agriculture with the co-operation of a number of organisations, whose members are taking up the work with enthusiasm.

Many tons of first quality ergot go to waste every summer in the swamp areas of New Zealand. Ergot is worth just now up to 8s [8 shillings] a pound in money value, but is worth infinitely more in terms of human lives and suffering. It is obviously the duty of everyone who has the opportunity to collect every pound for dispatch to Britain.

Escaping the drudgery of school

Dawn Rose reminisced about Onekaka School in Golden Bay. She recalled of how in the summer, her class would go out and pick ergot-infected seed heads. “We’d spend hours along the roadsides pulling the heads right apart to find it. There was something in it that stopped bleeding, we were told. Our teacher would put it all in a jar and send it off.” However the collecting of ergot fell far short of the government’s expectation. They had anticipated collecting 14 tons [35840 pound] in 1942 but only 1600 lb were collected.

Children from Northcote, Auckland, collecting tall fescue infected with ergot [photo from Sir George Grey Special Collections, Auckland Libraries, AWNS-19420121-28-1

Children from Northcote, Auckland, collecting tall fescue infected with ergot [photo from Sir George Grey Special Collections, Auckland Libraries, AWNS-19420121-28-1, Sunday magazine 1 November 2015]

Meanwhile Department of Agriculture scientists collected ergots from around New Zealand and along with a strain they believed came from Hungary, attempted to artificial infect rye grass. It was estimated that 479lbs per acre but they only managed 176 lbs.

But even worse analysis of the New Zealand ergots at the University of Otago’s chemistry department found that the New Zealand ergot didn’t produced the needed chemicals and the Hungarian wasn’t much better.

So the call for ergot was cancelled in 1943.

Further Reading

Brightwell, S. 1993. Feasting on fungi. New Zealand Geographic 18 (June): 34-58

Great Britain’s need. Bay of Plenty Beacon, Volume 4, issue 199, page 6, 5 January 1942. From Papers Past

Gerard Hindmarsh, 3 June 2013. Fighting war with fungus. Nelson Mail. Stuff.co.nz

Otago’s war effort. From University of Otago 1869-2019 – writing a history. 27 April 2015